$a_w = p_e * H \mathcal{E} = \lambda_{y1} \mathcal{E}^2$

In fact, it is the quotient of the two acceleration terms (as a multiplier of the electric field frequency \mathbf{E}) that enters into the determination of the cyclotron frequency F_B :

$$\mathbf{\mathcal{E}}/\mathbf{a}_{w}(4\pi^{2}L_{2}\circ) = \mathbf{\mathcal{E}} * \frac{\mathbf{a}_{L}}{\mathbf{a}_{w}} = \mathbf{\mathcal{E}} * \frac{\ell_{c} F_{B}^{2}}{\lambda y_{1} \mathbf{\mathcal{E}}^{2}} = F_{B}$$

This clearly presented the frequency shift undergone by such waves once they interacted with the coil length. By defining n as the total number of charges composing, at any one time, the total charge Q of the secondary, we were able to show that F_B could also be expressed as a function of the fixed v_k frequency term that separates ionizing from non-ionizing photon radiation (and which can be written as numerically identical to the electric frequency \mathbf{E}_k of ambipolar radiation), and as involving the ratio of quadratic superimposition between massfree longitudinal spinning waves and the resultant light waves:

$$F_B = 4^2 (W_{v2^{\circ}}^4/c^4) (\mathbf{E}_k/n)$$

Evidently, this frequency term is arrived at by some substantial angular deceleration of the massfree waves, even if their linear velocity remains that given by $v = W_{v2^\circ}$.

The above facts compel us to identify F_B with F_{cyclo} , since, as the reader will remember from before ⁽¹⁾, for massfree charge the cyclotron frequency is a function, not of $W_k = \mathbf{p}_e/\lambda_e = \int q/m_e$, but of $W_v = \mathbf{p}_e/\lambda_{y1}$. And here, in the analysis of the TC, we encounter F_B as a 'magnetodynamic' (ie cyclotronic) frequency that is constitutive of the magnetic acceleration term (the reciprocal of the inductance of the secondary) and of the voltage wavespeed at resonance, $W_v = \ell_c F_B$.

The function, then, for the cyclotron frequency of induction coils can be written as-

$$F_{B} = (L_{2^{\circ}act} * W_{v2^{\circ}})^{-1} = (4\pi^{2} L_{2^{\circ}} W_{v2^{\circ}})^{-1} = W_{v2^{\circ}} / \ell_{c} = W_{v2^{\circ}} * B_{2^{\circ}} / 2\pi$$

with the corresponding angular 'velocity' being -

$$\omega_{\rm B} = 2\pi F_{\rm B} = 2\pi W_{\rm v2^{\circ}} / \ell_{\rm c} = W_{\rm v2^{\circ}} * B_{\rm 2^{\circ}}$$

and the value of the magnetic field, as the induction field $B_{2^{\circ}}$ of the secondary, being directly given by: